
Bézier Curve Transformation into Polynomial
Functions Utilizing System of Linear Equations

Nadhif Radityo Nugroho (13523045)1,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523045@mahasiswa.itb.ac.id, 2nadhifradityo@gmail.com

Abstract—Bézier curves, well-known curves mainly used in
computer graphics, have shown their advantages to designers
and software developers. Simplicity in their mathematical rep-
resentation allows adjustable performance based on screen or
zoom resolution. However, problem arises when further analyses
are required from the curves. A simple sampling does not
yield significant result on the information it carries. This paper
proposes a method to Bézier curve parameterization utilizing
linear algebra principles. The method successfully converts Bézier
curves into polynomials function with minimal sampling and
errors within acceptable margin. The generated polynomial
functions that can be further analyzed offering potential break-
throughs in mathematical analysis, computational simplification,
and integration into other systems.

Index Terms—Bézier curves, polynomial functions, Gauss-
Jordan elimination

I. INTRODUCTION

Bézier curves have been a breakthrough in computer graph-
ics, especially in photo editing software. Their usage has been
proven to ease designers and software developers with their
simple mathematical concept and relatively fast rendering.
Bézier curves also have dynamic performance since its res-
olution can be adjusted at runtime depending on the screen
or zoom resolution. Despite their simplicity, a usual dilemma
with Bézier curves usually comes when determining its curve
parameter.

A naive approach to analyzing Bézier curves usually in-
volves Newton’s method to find local minima or maxima,
followed by sampling near its critical point. However, this
approach introduces computational inefficiencies and often
lacks flexibility for dynamic rendering needs. Thus, there is a
growing demand for alternative methods that optimize Bézier
curve parameterization while maintaining computational effi-
ciency, that can offer potential breakthroughs in mathematical
analysis, computational simplification, and integration into
other systems.

This paper proposes a method to transform Bézier curves
into a set of polynomial functions using a systematic ap-
proach utilizing the principles of linear algebra. In brief, the
method mainly consists of lightly sampling the Bézier curve,
converting sampled points into a matrix, and finally using
matrix inversion concepts from systems of linear equations to
determine the polynomial coefficients. By further analyzing
the derivative of the generated polynomial functions, the

solution to determine curve parameter can be revealed. A zero
crossing in the derivative on the x-axis indicates a turning point
on the curve. Using this description, dynamic optimization and
more efficient rendering processes can be achieved.

II. THEORETICAL FOUNDATIONS

A. Bézier Curve

Bézier curves are defined by a collection of points. A single
variable that, in the range of 0 through 1, defines a point
interpolated from that interval. This method was invented by a
French engineer Pierre Bézier. Bézier curves in mathematical
terms, are defined this way:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi (1)

whereas
• t ∈ [0, 1] is the parameter.
• Pi are the control points.
•

(
n
i

)
= n!

i!(n−i)! is the binomial coefficient.
Expanded low-degrees Bézier curves can be expressed as

follows:
• Linear Bézier curve:

B(t) = (1− t)P0 + tP1 (2)

• Quadratic Bézier curve:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2 (3)

• Cubic Bézier curve:

B(t) = (1− t)3P0+3(1− t)2tP1+3(1− t)t2P2+ t3P3

(4)
This curve is majorly used in computer graphics, primarily

photo editing software. Because the step in which the interval
variable used is user-defined, the resolution of said curve can
be dynamic. This is a huge advantage in computer graphics,
as the rastered image can be calculated in real-time, giving
the illusion of infinite details. Another advantage is that the
Bézier curves allow designers to have more control over their
designs with the help of simple control points that they can
utilize with freedom.

mailto:13523045@mahasiswa.itb.ac.id
mailto:nadhifradityo@gmail.com


Fig. 1: 6 Control Points Bézier Curve with 5 Sample Points

Fig. 2: 6 Control Points Bézier Curve with 17 Sample Points

B. Matrix Inversion Utilizing Gauss-Jordan

Matrices are two dimensional arrays containing numbers
that can be arranged in terms of rows and columns. Rep-
resenting a fundamental structure in linear algebra, matrix
describes each of its rows to linear equations and columns
to variables. With this concept in mind, an important property
of matrix can be derived. The inverse of a matrix is a key
to solving system of equations and numerous applications in
mathematical modelling and computational algorithms. Inverse
of a square matrix M , denoted as M−1, satisfies the equality
M ·M−1 = I , where I is the identity matrix with its dimension
the same as matrix M .

Matrix inversion property helps convert a set of points
sampled from Bézier curves to polynomial functions. In most
cases, a single Bézier curve, respecting its complexity, cannot
be expressed with single polynomial functions, one might
expect performance-efficient algorithm as demand for larger
application grows. Using Gauss-Jordan method allows com-
putation of matrix inversion rather efficiently. Gauss-Jordan
method starts by augmenting square matrix with its identity
matrix, then performing a sequence of row operations, such as
row swapping, scaling, and addition, to transform the original
matrix into the identity matrix. This algorithm aligns with
a systematic and precise approach that integrates seamlessly
into this paper topic, making it an optimal choice for tasks
requiring efficiency and reliability.

In mathematical terms:

• Form the Augmented Matrix: Combine A and the identity

matrix I to form [A | I]

[A | I] =


a11 a12 · · · a1n 1 0 · · · 0
a21 a22 · · · a2n 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

an1 an2 · · · ann 0 0 · · · 1

 (5)

• Row Operations: Apply elementary row operations to
transform the left side into the identity matrix

– Row Addition (Adding a Multiple of One Row to
Another):

Ri ← Ri + αRj (6)

where α is a scalar.
– Scaling (Multiplying a Row by a Non-Zero Scalar):

Ri ← αRi where α ̸= 0 (7)

– Row Swapping (Interchange):

Ri ↔ Rj (8)

• Transformation: After completing the row operations, the
augmented matrix becomes

[I | A−1] =


1 0 · · · 0 b11 b12 · · · b1n
0 1 · · · 0 b21 b22 · · · b2n
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 bn1 bn2 · · · bnn


(9)

• Extract the Inverse: The right-hand side of the augmented
matrix is the inverse of A

A−1 =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn

 (10)

III. METHODOLOGY

Algorithmic approach is majorly used in Bézier curves
transformation into polynomial functions through a systematic
approach. The use of samplings, matrix inversion calculations,
error margin caps, and retrials are heavily used. With that said,
here are the main outlines of this paper:

• Sampling the Bézier Curve: Introduces a collection of in-
dependent x-coordinates and y-coordinates pair of points
that will be fed into the next step.

• Constructing the Polynomial Matrix: Converts sequence
of x-coordinates and y-coordinates along with its sam-
pling variable into a matrix.

• Computing the Polynomial Coefficients: From the matrix
constructed in the previous step, the coefficients are
computed by inversing the matrix.

• Error Analysis: Polynomial functions generated are com-
pared against the original Bézier curve. A retrial may
occur but with utilizing critical points derived from
generated polynomial functions.



IV. IMPLEMENTATION

This paper uses an algorithmic methodology to transform
Bézier curves into polynomial functions efficiently. Systemic
approach involving sampling, matrix inversion, and iterative
refinement to minimize error, are used in this algorithm. Key
steps include sampling the Bézier curve to obtain x-coordinate
and y-coordinate pairs along with its parametric interval,
constructing a polynomial matrix using these sampled points,
and computing polynomial coefficients via matrix inversion.
Finally, perform an error analysis by comparing the generated
polynomial functions against the original Bézier curve. If
the errors are outside the margin, retrials are incorporated
utilizing critical points from the derived polynomial functions
to enhance accuracy.

A. Sampling the Bézier Curve

Sampling involves the step of taking a curve parameter in
the range of 0 through 1. At 0, it sits exactly on the first control
point. Conversely at 1, it sits exactly on the last control point.
The value between 0 through 1 describes the interpolated value
between many points.

With no educated guess provided, the algorithm initially
samples the curve naively with fixed increment. This initial
sampling produces a set of independent x-coordinates and y-
coordinates points. These coordinates must be typically the
same length, as the curve parameters are the same regardless
of independent sampling. These points will later be fed to a
matrix accordingly in the next step.

Algorithm 1 Sample Bézier Curve Point
implements: Equation 1

Require: points = {p0, p1, . . . , pn}, t ∈ [0, 1]
Ensure: (x, y)

x← 0
y ← 0
n← length of points− 1
for i← 0 to n do

B(n, i)← n!
i!·(n−i)!

basis(n, i, t)← B(n, i) · (1− t)n−i · ti
x← x+ basis(n, i, t) · xi

y ← y + basis(n, i, t) · yi
end for

return (x, y)

B. Constructing the Polynomial Matrix

The polynomial square matrix is constructed by evalu-
ating each curve parameters raised to powers decreasing
from the highest degree to zero. This matrix construction is
commonly known as Vandermonde matrix. In mathematical
terms, let n be the number of points, and let the points be
(x1, y1), (x2, y2), . . . , (xn, yn). And its form can be expressed
as:

M =


xn−1
1 xn−2

1 · · · x0
1

xn−1
2 xn−2

2 · · · x0
2

...
...

. . .
...

xn−1
n xn−2

n · · · x0
n

 (11)

C. Computing the Polynomial Coefficients

To determine the coefficients of the polynomial, the matrix
from previous step is then inverted and multiplied by a column
matrix containing the target sampled values. The sampled
values are x-coordinates and y-coordinates which both get
computed independently. To solve the polynomial coefficients
a =

[
an−1 an−2 . . . a0

]
, the equation is:

a = M−1 · y (12)

where M is the Vandermonde matrix from previous step, and
y is

[
y1 y2 . . . yn

]
.

Algorithm 2 Compute Polynomial Coefficients
implements: Equation 12

Require: intervals, sampledPoints
Ensure: xCoefficients, yCoefficients
n← length(intervals)
m← length(sampledPoints)
vandermondeMatrix← Matrix(n, n)
for i← 0 to n− 1 do

for j ← 0 to n− 1 do
vandermondeMatrix[i][j]← intervals[i]n−1−j

end for
end for
targetXMatrix← Matrix(m, 1)
for i← 0 to m− 1 do

targetXMatrix[i][0]← sampledPoints[i][0]
end for
targetYMatrix← Matrix(m, 1)
for i← 0 to m− 1 do

targetYMatrix[i][0]← sampledPoints[i][1]
end for
inverseVandermondeMatrix← invert(vandermondeMatrix)
xCoefficients← inverseVandermondeMatrix·

targetXMatrix
yCoefficients← inverseVandermondeMatrix·

targetYMatrix

D. Error Analysis

The generated polynomial function may deviate from the
original Bézier curve. The need of error analysis is important
as it allows metrics computation to fit the error within margin.

Algorithm 3 Calculate Error

Require: bezierResolution, polynomialResolution
Ensure: score
bezierPoints← new array with size bezierResolution
for i = 0 to bezierResolution do

tb ← i+1
bezierResolution

bezierPoints[i]← sampleBezierCurve(points, tb)
end for
polynomialPoints← new array with size

polynomialResolution
for i = 0 to polynomialResolution do

tp ← i+1
polynomialResolution

xp ← computePolynomials(xCoefficients, tp)



yp ← computePolynomials(yCoefficients, tp)
polynomialPoints[i]← [xp, yp]

end for
score← 0
for p ∈ polynomialPoints do

minDist←∞
for b ∈ bezierPoints do

dist←
√

(p[0]− b[0])2 + (p[1]− b[1])2

minDist← min(minDist, dist)
end for
score← score+minDist

end for

E. Retrying Sample

Given in the initial sampling with no educated guess, the
generated polynomials may deviate too much from actual
Bézier curve. Fortunately within the generated polynomials,
a set of helpful hints can be derived from its derivative. This
includes the rate of curve parameter contributing to sampled
point. Given an arbitrary intervals, a curve parameter may have
big distance from the last sampled point. This problem mainly
leads to uneven details on the Bézier curve.

Algorithm 4 Distribute Intervals

Require: coefficients, integrationResolution, intervals
Ensure: clumpedIntervals
integration← 0
for i = 0 to integrationResolution− 1 do

x← i
integrationResolution

polyV alue← computePolynomials(coefficients, x)
integration← integration+ polyV alue

integrationResolution
end for
normalizedCoeff ← array of size

length(coefficients)
for i = 0 to length(coefficients)− 1 do

coeff ← coefficients[i]
normalizedCoeff [i]← coeff

integration
end for
integratedNormalizedCoeff ← array of size

length(normalizedCoeff) + 1
for i = 0 to length(normalizedCoeff)− 1 do

normalizedCoeffV alue← normalizedCoeff [i]
integratedNormalizedCoeff [i]←
normalizedCoeffV alue

i+1
end for
integratedNormalizedCoeff
[length(normalizedCoeff)]← 0

cdf ← x 7→ computePolynomials
(integratedNormalizedCoeff, x)

ppf ← inverse(cdf)
clumpedIntervals← new array of size intervals
for i = 0 to intervals− 1 do

t← i+1
intervals

clumpedIntervals[i]← ppf(t)
end for

V. RESULTS AND DISCUSSION

To make the implementation more clear, let’s take a look
at one example. This example will show how algorithms in
previous section work hand-in-hand. Say we have a Bézier
curve with these control points:

(394.6955, 256.6955), (305, 328), (504, 341),
(625.5372, 179.7772), (370.4139, 177.0606),

(251.6408, 326), (447.1015, 324.203), (576, 328),
(703.3859, 228.1298), (555.0546, 228.4278),
(378.7305, 187.3664), (398.0841, 378.5589)

 (13)

Initially, we sample the Bézier curve using Algorithm 1 with
fixed intervals. With n = 4, initial intervals and sampled points
respectively will be: [

0.25, 0.5, 0.75, 1
]

(14)[
(455.8376, 263.7338) (449.6922, 279.2926)
(545.1082, 255.4035) (398.0841, 378.5589)

]
(15)

In this step, we get the raw visualization of the Bézier curve:

Fig. 3: A Sample Input Bézier Curve

Construct the Vandermonde matrix using Equation 11, then
inverse it utilizing Gauss-Jordan elimination.

T =


0.015625 0.0625 0.25 1
0.125 0.25 0.5 1

0.421875 0.5625 0.75 1
1 1 1 1

 (16)

• Write the augmented matrix: 0.015625 0.0625 0.25 1 1 0 0 0
0.125 0.25 0.5 1 0 1 0 0

0.421875 0.5625 0.75 1 0 0 1 0
1 1 1 1 0 0 0 1


• Find the pivot in the 1st column and swap the 4th and

the 1st rows: 1 1 1 1 0 0 0 1
0.125 0.25 0.5 1 0 1 0 0

0.421875 0.5625 0.75 1 0 0 1 0
0.015625 0.0625 0.25 1 1 0 0 0


• Eliminate the 1st column: 1 1 1 1 0 0 0 1

0 0.125 0.375 0.875 0 1 0 −0.125
0 0.1406 0.3281 0.5781 0 0 1 −0.4218
0 0.0468 0.2343 0.9843 1 0 0 −0.0156





• Make the pivot in the 2nd column by dividing the 2nd
row by 0.125: 1 1 1 1 0 0 0 1

0 1 3 7 0 8 0 −1
0 0.1406 0.3281 0.5781 0 0 1 −0.4218
0 0.0468 0.2343 0.9843 1 0 0 −0.0156


• Eliminate the 2nd column: 1 0 −2 −6 0 −8 0 2

0 1 3 7 0 8 0 −1
0 0 −0.093 −0.406 0 −1.125 1 −0.281
0 0 0.093 0.656 1 −0.375 0 0.031


• Make the pivot in the 3rd column by dividing the 3rd

row by -0.09375: 1 0 −2 −6 0 −8 0 2
0 1 3 7 0 8 0 −1
0 0 1 4.3333 0 12 −10.66 3
0 0 0.093 0.656 1 −0.375 0 0.031


• Eliminate the 3rd column: 1 0 0 2.6666 0 16 −21.33 8

0 1 0 −6 0 −28 32 −10
0 0 1 4.3333 0 12 −10.66 3
0 0 0 0.25 1 −1.5 1 −0.25


• Make the pivot in the 4th column by dividing the 4th row

by 0.25: 1 0 0 2.6666 0 16 −21.33 8
0 1 0 −6 0 −28 32 −10
0 0 1 4.3333 0 12 −10.66 3
0 0 0 1 4 −6 4 −1


• Eliminate the 4th column: 1 0 0 0 −10.6667 32 −32 10.6667

0 1 0 0 24 −64 56 −16
0 0 1 0 −17.3333 38 −28 7.3333
0 0 0 1 4 −6 4 −1



T−1 =


−10.6667 32 −32 10.6667

24 −64 56 −16
−17.3333 38 −28 7.3333

4 −6 4 −1

 (17)

Finally we compute the polynomial coefficients for both
axes using Algorithm 2.

Xcoeff = T−1 ·


455.838
449.692
545.108
398.084

 =


−3669.350
6316.517
−3156.629
907.546



Ycoeff = T−1 ·


263.734
279.293
255.403
378.559

 =


1989.254
−3299.464
1666.535
22.235


(18)

With the nature of polynomial continuous function property,
the generated polynomials are smooth even with small sample
points. Fig. 4 shows X(t) as black line representing x-
movement and Y (t) as red line representing y-movement. The
resulting curve is in the blue line, this sample result is within
error margin and visually similar compared to original Bézier
curve Fig. 3.

Fig. 4: The Generated Polynomials from Input Fig. 3

Tests in Table I are mainly driven by Bézier curve edge
cases. This includes overlapping control points, collinear con-
trol points, and self-intersecting curves with multiple control
points. These drivers ensure the algorithm proposed by this
paper will work under any circumstances.

VI. CONCLUSION

This paper presents a method for parameterizing Bézier
curves using principles of linear algebra. The proposed ap-
proach successfully converts Bézier curves into polynomial
functions with minimal sampling and acceptable error margins,
addressing the limitations of simple sampling techniques that
fail to capture the curves’ detailed edges.

The method involves a systematic process, beginning with
the sampling of the Bézier curve to gather pairs of x- and
y-coordinates. These coordinates are used to construct a
polynomial matrix, which is then inverted to compute the
polynomial coefficients. Finally, an error analysis step ensures
the generated polynomial functions closely approximate the
original Bézier curve. If discrepancies are detected, retrials
utilizing critical points derived from the polynomial functions
further enhance accuracy.

The generated polynomial functions offer a pathway for
deeper mathematical analysis, computational simplification,
and integration into other systems. This advancement in Bézier
curve parameterization has the potential to significantly impact
mathematical modeling and computational design, providing a
robust tool for designers and developers.



TABLE I: Test Results

Overlapping Control Points Collinear Control Points Self-Intersecting Curve

Overlapping
Control Points

Fig. 5: Input Low-Sampled Bézier
Curve for Overlapping-Overlapping
Test Case

Fig. 6: Output Parametric Polyno-
mial from Overlapping-Overlapping
Test Case

Fig. 7: Input Low-Sampled Bézier
Curve for Collinear-Overlapping
Test Case

Fig. 8: Output Parametric Poly-
nomial from Collinear-Overlapping
Test Case

Fig. 9: Input Low-Sampled Bézier
Curve for Intersecting-Overlapping
Test Case

Fig. 10: Output Parametric Polyno-
mial from Intersecting-Overlapping
Test Case

Collinear
Control Points

Fig. 11: Input Low-Sampled Bézier
Curve for Collinear-Overlapping
Test Case

Fig. 12: Output Parametric Poly-
nomial from Collinear-Overlapping
Test Case

Fig. 13: Input Low-Sampled Bézier
Curve for Collinear-Collinear Test
Case

Fig. 14: Output Parametric Polyno-
mial from Collinear-Collinear Test
Case

Fig. 15: Input Low-Sampled Bézier
Curve for Collinear-Intersect Test
Case

Fig. 16: Output Parametric Polyno-
mial from Collinear-Intersect Test
Case

Self-Intersecting
Curve

Fig. 17: Input Low-Sampled Bézier
Curve for Intersecting-Overlapping
Test Case

Fig. 18: Output Parametric Polyno-
mial from Intersecting-Overlapping
Test Case

Fig. 19: Input Low-Sampled Bézier
Curve for Collinear-Intersect Test
Case

Fig. 20: Output Parametric Polyno-
mial from Collinear-Intersect Test
Case

Fig. 21: Input Low-Sampled Bézier
Curve for Intersect-Intersect Test
Case

Fig. 22: Output Parametric Poly-
nomial from Intersect-Intersect Test
Case



APPENDIX

The code implementation for the methods
and experiments discussed in this paper can
be found at the following GitHub repository:
https://github.com/NadhifRadityo/poly-bezier-transform.
This repository contains:

• The source code for the poly-bezier transformation tech-
niques described in the paper.

• Instructions for setting up the development environment
and running the code.

• Example datasets and scripts for replicating key results
presented in this study.

Please do explore the repository for a deeper understanding of
the implementation details and for any potential extensions
of the methodology. for issues or questions regarding the
repository, please refer to the provided documentation or
contact the repository maintainer directly.

ACKNOWLEDGMENT

The author would like to express profound gratitude to Ir.
Rila Mandala, M.Eng., Ph.D. along with Dr. Ir. Rinaldi Munir,
M.T. for their invaluable guidance and insights as IF2123
Linear Algebra and Geometry course lecturers, which greatly
contributed to the development of this paper.

The author also extends apologies for any shortcomings that
may remain in this work. It is sincerely hoped that this paper
will serve as a useful reference for future studies and research
purposes.

REFERENCES

[1] Baydas, S., Karakas, B. 2019. Defining a curve as a Bézier curve. Journal
of Taibah University for Science.

[2] Matusik, W. 2012. MIT OpenCourseWare: Bézier Curves and Splines.
Massachusetts Institute of Technology.

[3] Melo, M. 2021. Understanding Bézier Curves.
[4] Munir, R. 2023. Sistem Persamaan Linier (SPL): Metode Eliminasi

Gauss-Jordan.
[5] Strang, G. 2009. Introduction to Linear Algebra.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 31 Desember 2024

Nadhif Radityo N. (13523045)

https://github.com/NadhifRadityo/poly-bezier-transform

	Introduction
	Theoretical Foundations
	Bézier Curve
	Matrix Inversion Utilizing Gauss-Jordan

	Methodology
	Implementation
	Sampling the Bézier Curve
	Constructing the Polynomial Matrix
	Computing the Polynomial Coefficients
	Error Analysis
	Retrying Sample

	Results and Discussion
	Conclusion
	References

